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“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	


	
–Carl Friedrich Gauss, 1777-1855 

 Visualization and Data Analysis Tools	
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Complex of 
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Executive Summary	


- Postprocessing tools	

- Interactive (+)	

- Full-featured (+)	

- Scalability limited by data size (-)	

- High latency results (-)	

- Examples: R, ParaView, VisIt	


- Run-time tools	

- Coprocessing	

- In Situ	

- Direct data access (+)	

- Low latency results (+)	

- Interaction more difficult (-)	

- Limited features (-)	

- Examples: ADIOS, GLEAN, DIY	
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Postprocessing Tools	




Postprocessing Scientific Data Analysis in HPC Environments���
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Examples:	

2D statistical graphics using R	


3D scientific visualization using ParaView	

Scientific visualization using VisIt	
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Statistical Graphics: 	

http://r-project.org/ 

- S (1976) John Chambers,  Bell 
Labs 	

- R (1993) R. Gentleman and R. 
Ihaka, Auckland	

- ~250K – 1M users	

- Steep learning curve (3000-
page manual)	

- Merges statistics with plotting	

- Powerful plotting features	




Data Pipeline Tools���

Data analysis as a series of transformations	


-Source, filters, and sink	

-VTK (Schroeder, Martin, Lorensen 1993)	

-Many tools on top of VTK: ParaView, VisIt, VisTrails	

-Code reuse, portability, standardization	
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3D & 4D Scientific Visualization:	


- Started in 2000 with Kitware and LANL, later included SNL and ARL	

- VTK engine	

- Qt interface	

- Contacts: Ken Moreland (SNL), Berk Geveci (Kitware)	

- Tutorials at SC, SciDAC, elsewhere	

     http://www.itk.org/Wiki/ParaView_2.X_documentation_and_tutorials	


http://www.paraview.org	


0.5 billion-cell 
weather 
visualization 
courtesy Ken 
Moreland	
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Advanced ParaView: Client-Server Mode	


On Eureka:	

-Add a few one-time items to .softenvrc, .bashrc	

-Grab nodes in interactive mode for a time: 	

qsubi -n 4 –t 60  
- Start the pvserver: 	

mpirun -np 4 -machinefile $COBALT_NODEFILE /soft/apps/
paraview-3.4.0-mpich-mx/bin/pvserver 

On local machine:	

-Setup a tunnel:	

ssh -NL 11111:vs37:11111 username@eureka.alcf.anl.gov  
-Start ParaView, configure connection, connect	

-Beware to have matched ParaView versions between client and server	

http://paraview.org/paraview/resources/software.html	


Eureka setup instructions at 	

https://wiki.alcf.anl.gov/index.php/Paraview_on_the_Data_Analytics_Cluster	
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3D & 4D Scientific Visualization:	


- Started in 2000 at LLNL as an ASCI-funded program	

- VTK-like engine	

- Qt interface	

- Contacts: Hank Childs (BNL, UC-Davis), Jeremy Meredith (ORNL)	

- Tutorials at SC, SciDAC, elsewhere	

    https://wci.llnl.gov/codes/visit/1.4.1/VisualizationWithVisIt.pdf	


https://wci.llnl.gov/codes/visit/
home.html	


Rayleigh-Taylor 
Instability 
visualization 
courtesy Hank 
Childs	




10	


Advanced VisIt: Scripting Mode	

OpenDatabase("localhost:/filename", 0)	

AddPlot("Pseudocolor", ”velx", 1, 1)	

AddOperator("Box", 1)	

AddOperator("Resample", 1)	

SetActivePlots(0)	


SetActivePlots(0)	

BoxAtts = BoxAttributes()	

BoxAtts.amount = BoxAtts.Some	

BoxAtts.minx = -0.4	

BoxAtts.maxx = 0.4	

BoxAtts.miny = -0.4	

BoxAtts.maxy = 0.4	

BoxAtts.minz = -0.4	

BoxAtts.maxz = 0.4	

SetOperatorOptions(BoxAtts, 1)	


DrawPlots()	

ExportDBAtts = ExportDBAttributes()	

ExportDBAtts.db_type = "BOV"	

ExportDBAtts.filename = "0.x"	

ExportDBAtts.dirname = "."	

ExportDBAtts.variables = ”velx"	

ExportDBAtts.opts.types = ()	

ExportDatabase(ExportDBAtts)	


quit()	


Save in script.py.	


Run with:	

visit –cli –nowin –s script.py	


Capture the script with Controls | Command 
and record	




11	


What We Learned So Far	


- No one tool can do it all	

- Tools have steep learning curves, may require expert 
assistance	

- Competing tools are often quite similar, choices often are 
not that critical	

- There will always be a role for postprocessing tools	
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Run-time Tools	




Run-time Scientific Data Analysis in HPC Environments���
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Examples:	

GLEAN,  ADIOS,	


ParaView Coprocessing Library	


Examples:	

GLEAN,  ADIOS,	


DIY	


R, 	

ParaView,  VisIt	


Analyze	




The Data-Intensive Nature of Computing and Analysis	


Machine FLOPS 
(Pflop/s) 

Storage B/W 
(GB/s) 

Bytes comp. 
per byte 
stored 

LLNL BG/L 0.6 43 O(10 3) 

Jaguar XT4 0.3 42 O(10 3) 
Intrepid BG/

P 0.6 50 O(10 3) 

Roadrunner 1.0 50 O(10 4) 

Jaguar XT5 1.4 42 O(10 4) 

Normalized Storage / Compute Metrics	


-In 2001, bytes computed per bytes 
stored was approximately 50. 	

Refs: John May, 2001, Murphy et al. ICS’05.	


The relative percentage of time in the stages of 
volume rendering as a function of system size. 
Large visualization is dominated by data 
movement: I/O and communication.	
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“Analysis and visualization will be limiting factors in gaining insight from exascale data.”	

–Dongarra et al., International Exascale Software Project Draft Road Map, 2009. 



Scalable Analysis & Visualization: The 
Data Parallel Approach���

Treat analysis as any other parallel computation	


-Decompose the domain	

-Assign to processors	

-Combine local and global operations	

-Use parallel I/O, MPI, other programming models	

-Balance load, minimize communication	

-Measure strong, weak scaling, efficiency	


“The combination of massive scale and complexity is such that high performance computers 
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program 
Announcement LAB 10-256, 2010. 15	


Integrate with simulation	




Tackling the Data-Intensive Part of Data Analysis���

DIY: help the user write own data-parallel analysis algorithms. ���
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Main ideas and Objectives 	


-Large-scale parallel analysis (visual and 
numerical) on HPC machines	

-Scientists, visualization researchers, 
tool builders	


-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	


Benefits	


-Researchers can focus on their own 
work, not on parallel infrastructure	


-Analysis applications can be custom	

-Reuse core components and algorithms 
for performance and productivity	




Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of combustion Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	




Separate Analysis Ops from Data Ops	


You do this yourself	


Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 

Analysis Application Application 
Data Model 

Analysis 
Data Model 

Analysis 
Algorithm 

Particle 
Tracing 

CFD Unstructured 
Mesh 

Particles Numerical 
Integration 

Information 
Entropy 

Astrophysics AMR Histograms Convolution 

Morse-Smale 
Complex 

Combustion Structured 
Grid 

Complexes Graph 
Simplification 

Computational 
Geometry 

Cosmology Particles Tessellations Voronoi 

Communica
tion 

Additional 

Nearest 
neighbor 

File I/O, 
Domain 
decompositi
on, process 
assignment, 
utilities 

Global 
reduction, 
nearest 
neighbor 

Global 
reduction 

Nearest 
neighbor 



Group Data Items Into Blocks	
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The block is DIY’s basic unit of data. Original dataset is decomposed into generic 
subsets called blocks, and associated analysis items live in the same blocks. Blocks 
contain one or more instances of the data type described earlier.	


!"#$%"$#&'()#*' +,-()#*' ./0"#$%"$#&'(,&01



Block ≠ Process	
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All data movement operations are per block; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	


!"#$%&'(('( )"#$%&'(('( *"#$%&'((



Group Blocks into Neighborhoods	
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-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	
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Provide Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	
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Make Global and Neighborhood Communication 
Fast and Easy	
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DIY provides 3 efficient scalable communication algorithms on top of MPI. May be 
used in any combination.	


Analysis Communication 

Particle Tracing Nearest neighbor 

Global Information 
Entropy 

Merge-based reduction 

Point-wise Information 
Entropy 

Nearest neighbor 

Morse-Smale Complex Merge-based reduction 

Computational Geometry Nearest neighbor 

Region growing Nearest neighbor 

Sort-last rendering Swap-based reduction 

Factors to consider when 
selecting communication 
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory size	

-homogeneity of data	




3 Communication Patterns	
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Data Input	
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Multiblock and Multifile I/O	


-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated  into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	


Input algorithm	


Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 



Analysis Output	
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Features	


Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	


Output file format	


!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#



Implement Data Operations in a Library with a small l	
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Library	


Written in C++	

C bindings, future Fortran bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

-MPI-IO, BIL	


Domain decomposition	

-Decompose domain	

-Describe existing decomposition	


Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	
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Interactive Voronoi Exploration in 
ParaView	


-ParaView reader for Voronoi output 
from previous slide	


-Plugin as part of suite of cosmo tools 
in ParaView	


-Threshold filter	


-Connected component labeling	


-Analysis of connected components	


Work With Postprocessing Tools	
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Run-time Tools Recap	


- In situ and coprocessing (terms can be confusing and often 
used differently)	

- We covered in situ analysis with a library called DIY	

- Perform some amount of analysis in the simulation and 
write those results for later postprocessing	




Applications of Run-time Analysis	
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Computational Geometry for Cosmology	


-Cosmology N-body simulations produce a 
sparse particle field	


-Can cluster to find halos	

-Finding voids more difficult	

-Dense geometric field is useful 

(tessellation)	

-Voronoi tessellation is ideal because it 

adapts automatically to particle 
distribution and assumes little about 
cell size and shape	


-Idea: Generate Voronoi cells from 
particle data in situ, threshold filter, and 
store for later postprocessing analysis.	


Peterka et al., Meshing the Universe: Identifying Voids in Cosmological Simulations Through In Situ Parallel 
Voronoi Tessellation, Submitted to LDAV’12 



Parallel Voronoi Tessellation	


Thresholding cell volume to reveal cosmological voids	


Particles Processes Total Time (s) Simulation 
Time (s) 

Tessellation 
Time (s) 

512^3 2048 3852 3684 167 

4192 2008 1918 89 

8096 1784 1722 62 

16384 1406 1344 61 

Subset of strong and weak 
scaling test results shows 
good scalability and relatively 
small fraction of total run 
time for in situ analysis	
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Parallel Time-Varying Flow Analysis	


Approach	


-In core / out of core processing of time 
steps	

-Simple load balancing (multiblock 
assignment, early particle termination)	


-Adjustable synchronization 
communication 	


Collaboration with the Ohio State University and University of Tennessee Knoxville 

Algorithm	

for (epochs) {	

  read my process’ data blocks	

  for (rounds) {	

    for (my blocks) { 	

      advect particles	

    }	

    exchange particles	

  } 	

}	


Pathline tracing of 32 time-steps of 
combustion in the presence of a cross-flow	


Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11 



Parallel Particle Tracing	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	
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Parallel Information-Theoretic Analysis	


Objective	

-Decide what data are the most essential for 
analysis 	


-Minimize the information losses and maximize the 
quality of analysis	


-Steer the analysis of data based on information 
saliency	


Information-theoretic approach	

-Quantify Information content based on Shannon’s 
entropy	


-Use this model to design new analysis data 
structures and algorithms	


Collaboration with the Ohio State University and New York University Polytechnic Institute 
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Shannon’s Entropy 	

The average amount of information 
expressed by the random variable is	




Information Entropy Performance and Scalability	


36	


Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	
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Parallel Topological Analysis	


- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	


Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	


Collaboration with SCI Institute, University of Utah 

Example of computing discrete gradient and Morse-Smale Complex	


1	
 2	


3	
 4	


Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12 



Morse-Smale Complex Performance and Scalability	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	




Summary	


-Consider data and data movement as first-class citizens	


-Tools needed both for run-time as well as postprocessing analysis	


-Analysis is any sequence of operations on data that hopefully 
reduces its size and/or improves its understandability	


-Much more work to be done!	
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–Richard Hamming, 1962 

CScADS Summer 
Workshop 7/26/12	


Acknowledgments:	


Facilities	

Argonne Leadership Computing Facility (ALCF)	


Oak Ridge National Center for Computational Sciences (NCCS)	


Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	


http://www.mcs.anl.gov/~tpeterka/
software.html	


https://svn.mcs.anl.gov/repos/diy/trunk	



